
The Math Behind the Volvelles
Andrew Poelstra
2021 December 6

1 Mathematical Preliminaries

In this first section we give a crash course in field theory. Readers familiar with this
material should have no problem skipping or skimming this section, at least up to Section
1.5. Readers who are completely unfamiliar with this material are unlikely to be able to
follow the condensed exposition, and are encouraged to consult standard algebra textbooks
(e.g. the one by Dummit and Foote) or Wikipedia.

1.1 Fields and F2

Consider the integers modulo 2. This is a set consisting of two equivalence classes, the
evens and the odds, which hereafter we will refer to as 0 and 1. This set is a field, which
means that when we define addition and multiplication in the obvious way, it satisfies the
following axioms:

1. The set is closed under addition; addition is associative, commutative, has an identity
element 0, and all elements have additive inverses. In other words it is an abelian
group under addition.

2. Similarly it is an abelian group under multiplication, with identity 1.

3. The distributive law holds, which means that a(b + c) always equals ab + ac.

We refer to this field as F2. For any field, we refer to its nonzero elements as the
multiplicative group of the field. We observe that the multiplicative group of F2 has
only the identity element.

1.2 Polynomial Rings

Since F2 has only two elements, it is hard to do interesting algebra on it. But it is a fact that,
by adjoining a formal symbol x to a field, we can obtain a much bigger (in fact, countably
infinite) set of polynomials in F2. We denote this set F2[x] and call it the polynomial
ring of the field.

Formally, the set of polynomials is defined as

{
n

∑
i=0

aix
i
∶ n ∈ N ∪ {0}, ai ∈ F2}

A ring, for our purposes, is defined the same way as a field except that we do not require
multiplication to be invertible. It is easy to check that the polynomial ring, endowed with
addition and multiplication in the obvious ways, is in fact a ring.

1



For a polynomial of the form ∑n
i=0 aix

i we refer to n as the degree of the polynomial.
It is an elementary fact that the product of polynomials has degree equal to the sum of the
degrees of the factors.

We refer to polynomials of degree 0 is constant polynomials. It is also a fact that a
polynomial has a multiplicative inverse, i.e. it is a unit, if and only if it is constant.

If a polynomial r can be written as the product of two polynomials as r = pq, where
neither p nor q are units (degree 0) we say that r is irreducible.

1.3 Quotient Fields

Just like we can consider the integers modulo some integer n, thus obtaining n equivalence
classes which inherit (roughly) the original ring structure of the integers, we can consider
a polynomial ring modulo some polynomial p. In this case, we will get m

n equivalence
classes, where m is the number of elements in the underlying field and n is the degree of
the polynomial. For our purposes m is always 2, so we get 2

n elements.
We call the set of equivalence classes a quotient ring, and its addition and multiplica-

tion are defined in the obvious way.
Just like in the integer case, if our polynomial p can be factored into nonconstant

polynomials as p = p1p2, their images in the quotient ring will be nonzero but satisfy
p1p2 = 0. In other words they are zero divisors and imply that multiplication in the ring
is not invertible.

We do not like zero divisors, so from here on out we will be sure to mod out our
polynomial ring only by irreducible polynomials. It is a fact that the resulting quotient
ring will then be a field, and we term it a quotient field. It is a fact that x

5 + x
3 + 1 is

irreducible in F2, so that F2/(x5 + x
3 + 1) is a quotient field with 32 elements.

In this field the object x is a field element with a distinct identity and algebraic prop-
erties, so we rename it α to preserve the symbol x to be an indeterminate used for writing
polynomials.

It is a fact that, for this specific polynomial, that α is a generator of the quotient field,
meaning that the field in its entirety is equal to

{αi
∶ i ∈ {0, 1, . . . , 30}}

and zero.
We observe that the order of the multiplicative group is 31, a prime, and therefore

every element of the group except 1 is a generator of the group. Furthermore there are no
nontrivial proper subgroups. These are an elementary facts of group theory.

We refer to this new field as F32. It is fact of field theory that all groups with 32
elements are isomorphic to this one, which justifies the name. But bear in mind that, for
our purposes, the field was constructed as F2[x]/(x5 + x

3 + 1) and has a distinguished
generator α which is a root of that polynomial.

2



1.4 Vector Spaces

We observe that F32 is a vector space over F2. A vector space V over a field F is defined
by the following axioms:

1. V is an abelian group with operation + and identity 0V .

2. (a + b)v = av + bv and a(u + v) = au + av for all a, b ∈ F and u, v ∈ V .

We refer to a finite sum of the form ∑i fivi with fi ∈ F and vi ∈ V as a linear
combination. We observe that every element of F32 is a linear combination of the elements
{1, α, α2

, α
3
, α

4}, and that no smaller set of elements has this property. We call such a set
a basis for F32.

1.5 Lagrange Interpolation and Shamir’s Secret Sharing

Let F be a field and p a polynomial of degree n in F[x]. It is a standard theorem of algebra
that p’s value on all points of F is implied by its values on any n + 1 distinct points.

As discovered by Edward Waring in 1779, and later by Joseph-Louis Lagrange in 17951,
it is actually possible to compute the value of a polynomial at a field element x explicitly
in terms of its values at n given distinct points xi.

Specifically, suppose that p(xi) = yi. Then

p(x) =
n+1

∑
i=1

yiℓi(x) (1)

where ℓi is determined entirely by the xi’s, as

ℓi(x) = ∏
j≠i

x − xj

xi − xj

There are several very interesting observations to be made here:

1. First, for a fixed set of xi’s, we see that the vector space of n-degree polynomials over
F is spanned by the set {ℓi(x)}. Since there are n+ 1 polynomials and this space has
dimension n+ 1 (an obvious basis for it is {1, x, x2

, . . . , x
n}), this means that the set

{ℓi(x)}i forms a basis for this space.

2. Further, these basis polynomials satisfy the equality ∑i ℓi(x) = 1. (One way to see
this is by using equation (1) to interpolate the constant one polynomial.)

This means that equation (1) is an affine combination of the yi’s, a strengthening
of the familiar notion of linear combination. This property will become important, as
we will see.

1citation: Wikipedia

3



3. If we further fix x, we see that knowing p’s evaluation at every xi is sufficient to
determine p(x), while knowing any fewer evaluations provides zero information about
x: suppose for example that yn is unknown. Then by a suitable choice of yn in (1)
we can cause p(x) to take any of the ∣F∣ possible values.

Putting these facts together, we obtain Shamir’s Secret Sharing Scheme (SSSS) for
splitting a secret element of F into up to ∣F∣− 1 shares, such that a fixed threshold number
k of them are sufficient to reconstruct the secret:

1. First, fix an index s ∈ F to be the secret index.

2. Generate a random (k − 1)-degree polynomial p by choosing k random values and
assigning them to be the evaluation of p at specific points xi ∈ F.

(If the secret is known beforehand, then fix p(s) to be the secret and generate k − 1

other evaluations of p. randomly.)

3. Distribute the points xi along with their evaluations p(xi) to multiple parties.

4. Then if any k of them come together, they can use equation (1) to reconstruct the
secret p(s).

We call the k randomly generated values initial shares and every other evaluation of
p a derived share.

There are several interesting observations here:

• If we have a sequence Fx = {fi} of elements of F, we can use SSSS in parallel on all of
them, choosing independently random polynomials {pi} and distributing the sequence
{pi(x)} along with the evaluation point x.

• If, for some particular i, fi is constant across our k initial shares Fx1
, . . . , Fxk

, La-
grange interpolation will cause the same constant to appear in the same position for
all derived shares. So you can have, say, a fixed header on all of your shares which
will be preserved by the secret-sharing mechanism.

• Similarly, for some particular i, you set fi = x, i.e. you encode the evaluation point
in a fixed place in your sequence, then Lagrange interpolation will interpolate the
polynomial p(x) = x here and place the correct value of x in the correct place for all
shares.

• Going even further, suppose for each initial share Fx = {fi}, some fixed affine relation
holds among the fi’s, e.g.

∑
i

αifi = β

for fixed β, αi ∈ F. Then this fixed affine relation will continue to hold for all derived
shares!

This is not immediately obvious but can be shown by direct computation and using
the fact that Lagrange interpolation is an affine combination of fi’s.

4



This fact is so important that we term it the Fundamental Theorem of Computing
SSSS with Volvelles. The Fundamental Theorem implies that if we apply any checksum
derived from a linear code (or a linear code plus a constant) to our initial shares, that the
derived shares will automatically be checksummed as well.

For more information about volvelles, see the next two sections.

1.6 The Bech32 Alphabet

The previous section indicated that if β ∈ F32, then we can write

β = b4α
4
+ b3α

3
+ b2α

2
+ b1α + b0

where each bi ∈ {0, 1}. We can therefore encode β as a 5-bit number by directly encoding
the bits bi. Alternately, since there are only 32 such βs, we assign them all alphanumeric
symbols, with four symbols to spare. This is the premise behind the bech32 alphabet,
defined in BIP 173, and reproduced on the following page.

In addition to the bech32 alphabet, which uses Latin characters, we also use an alternate
alphabet using Greek letters and various symbols.

We have ordered all the symbols in three ways – αbetically, alphabetically, and by their
“numeric” binary value. These three representations are useful in different contexts:

1. Representing elements as a power of α makes multiplication very easy, since multipli-
cation is just addition mod 31 in the exponent.

This is how our multiplication wheel can be implemented as a slide rule.

2. Representing alphabetically makes it easy for humans to scan and sort.

3. Representing in binary is how the elements are typically stored in computers, can be
used to convert data from other encodings. Addition is simply xor in this format.

5



Q × - 00000
P ℵ α

0 00001
Z α α

1 00010
Y Γ α

2 00100
G Θ α

3 01000
S Ψ α

4 10000
F Λ α

5 01001
J @ α

6 10010
D ρ α

7 01101
6 † α

8 11010
A ¶ α

9 11101
N # α

10 10011
0 Φ α

11 01111
7 ⧫ α

12 11110
4 ¢ α

13 10101
R β α

14 00011
X ϵ α

15 00110
V Π α

16 01100
C ¤ α

17 11000
E ⊕ α

18 11001
M ‡ α

19 11011
L ♥ α

20 11111
H ¤ α

21 10111
8 η α

22 00111
W Σ α

23 01110
U § α

24 11100
3 Ω α

25 10001
T Ξ α

26 01011
K ¥ α

27 10110
9 ∆ α

28 00101
2 µ α

29 01010
5 % α

30 10100

A α
9 11101

C α
17 11000

D α
7 01101

E α
18 11001

F α
5 01001

G α
3 01000

H α
21 10111

J α
6 10010

K α
27 10110

L α
20 11111

M α
19 11011

N α
10 10011

P α
0 00001

Q - 00000
R α

14 00011
S α

4 10000
T α

26 01011
U α

24 11100
V α

16 01100
W α

23 01110
X α

15 00110
Y α

2 00100
Z α

1 00010
0 α

11 01111
2 α

29 01010
3 α

25 10001
4 α

13 10101
5 α

30 10100
6 α

8 11010
7 α

12 11110
8 α

22 00111
9 α

28 00101

Q - 00000
P α

0 00001
Z α

1 00010
R α

14 00011
Y α

2 00100
9 α

28 00101
X α

15 00110
8 α

22 00111
G α

3 01000
F α

5 01001
2 α

29 01010
T α

26 01011
V α

16 01100
D α

7 01101
W α

23 01110
0 α

11 01111
S α

4 10000
3 α

25 10001
J α

6 10010
N α

10 10011
5 α

30 10100
4 α

13 10101
K α

27 10110
H α

21 10111
C α

17 11000
E α

18 11001
6 α

8 11010
M α

19 11011
U α

24 11100
A α

9 11101
7 α

12 11110
L α

20 11111

6



1.7 The Addition Volvelle

Volvelles, or slide charts, are computers constructed by two sheets of paper, cut into circles
and affixed at the center so that they are able to rotate relative to each other.

The top sheet has holes cut into it, selectively revealing data printed on the bottom
sheet, depending on the rotation. The top sheet has a pointer used to index the data being
revealed.

The Addition Volvelle. We have provided one volvelle, which computes addition in F32.
By setting the pointer to some value x, and looking at the window labeled y →, the value

7



x + y will be revealed. It is instructive to observe that the expected symmetries are there:
x + y = y + x, x + x = Q, x +Q = x, etc.

Volvelles and Algebraic Structure. Our volvelle has 32 holes cut in the face, corre-
sponding to the 32 bech32 characters. If all 32 positions of the volvelle revealed distinct
locations on the bottom wheel, it would require symbols to be printed on the bottom wheel
in 1024 positions. If there were algebraic structure relating the results of different volvelle
positions, we could reduce this number.

We will return to this idea in the next section, about slide rules, but for now we simply
observe that we did not reduce the number of symbols from the maximum 1024.

Why not? Well, observe that the way to reduce symbols is to have two windows at the
same radius from the center of the volvelle. Then on the bottom sheet, a single circle of
values would provide the revealed symbols for both windows. Let’s say that one window
is labeled x →, and the other labeled y →. Then since the windows are at a fixed angle
θ from each other (being printed on the same solid sheet of paper), we would require the
bottom circle of values to satisify

for all z ∈ F32 ∶ x + z and y + z are at angle θ to each other

Now, x + z and y + z differ by the fixed quantity x + y (recall we are in characteristic 2),
so this can be restated as

for all z ∈ F32 ∶ z and z + (x + y) are at angle θ to each other

Then observing that (x + y) + (x + y) = 0, two applications of the above equation give us

for all z ∈ F32 ∶ z is at angle 2θ from itself

It is now clear that if we either need to repeat characters (defeating the goal of reducing
the amount of symbols on the bottom wheel) or have θ = 180

◦.
Okay, so perhaps we can get a 50% reduction in density for the bottom wheel, by setting

θ = 180
◦ and having the windows on opposite sides of the top wheel be at the same radius

and use the same set of bottom-wheel symbols.
Let’s play this out. Take, for example, the A and T windows on the addition volvelle.

These differ by K, so we require that on the bottom wheel, symbols at this radius differ
from their opposite symbol by K. If the top wheel is pointing at some symbol a, and we
turn it 180

◦ to b, we have simply exchanged the values in these windows, i.e. added K to
both. But this implies that a + b = K.

In other words, for this compression to work, we need every pair of opposing symbols
to add to K; i.e. we need to take the sixteen 2-element cosets obtained by modding out by
K and then order the symbols so that each coset’s members appear opposite each other.

It can be seen, by modding out by every possible symbol, and trying various orderings

8



of the resulting cosets, that no such choice will lead to a “natural” ordering2. This means
that to get this compression, we’d need to reorder the wheel such that users wouldn’t know
which direction to spin to find a desired symbol, and the resulting harm to usability would
exceed the benefit of having larger windows.

If this argument was too abstract, take the addition volvelle and spin it to C (one right
of A) and look at the symbols in the A and T windows. Then spin it 180

◦ to U (one right
of T) and look at the same symbols. You will see different symbols. For this scheme to
work, they would need to be the same symbols. Ergo, we’d have to reorder the symbols in
a confusing order to make this work.

(By the way, this could be made to work if we rearranged our mapping between bech32
symbols and F32 objects so that the K-cosets, or whatever, were naturally ordered. But
deviating from the bech32 spec in this way, for such a minor benefit in volvelle layout,
doesn’t seem worth the potential confusion/incompatibility between the schemes.)

1.8 The Multiplication-Translation Slide Rule

Multiplication. While the addition volvelle could not be re-arranged to reduce the num-
ber of symbols beyond 1024, let’s consider the second operation we might like to do: mul-
tiplication.

For reasons that we will describe later, when multiplying in F32 it turns out that we
want to use the alternate symbol alphabet rather than the bech32 alphabet. We also don’t
care so much about multiplication by zero, which always results in zero, which we can tell
the user rather than putting it into a volvelle.

Now, we have 31 nonzero elements, so a volvelle would naively have 31
2
= 961 entries.

Can we do better? Using the same reasoning as with the addition volvelle, if we wanted
two windows x → and y → to share a radius, we’d need that

for all z ∈ F32 ∶ xz and yz are at angle θ to each other

We have a group under multiplication with 31 elements in it. It is then a fact that if we
choose any element α ∈ F∗

32 except 1, that α generates the group. Meaning that every
element z, including 1, can be written as z = α

iz where iz is some integer modulo 31. So
we may write

for all αiz
∈ F32 ∶ α

ixα
iz

= α
ix+iz and α

iyα
iz

= α
iy+iz are at angle θ to each other

By squinting at this for a moment, you can observe that if θ is one 31th of a full rotation,
and we make sure that each α

i on the front wheel is followed by α
i+1, then every single

2There are 16 cosets, so 15 ≊ 2
40 different arrangements around a circle. Then you can exchange the

members in each coset, for another 2
15 possibilities. So an exhaustive search would require about 2

55 work.
I did not do an exhaustive search, so I may be wrong in claiming that “no such choice” works. But I spent
several hours starting from random permutations and then looking for local optima and never got very
close. My measure of “naturalness” was to take the distance d between each character and its alphanumeric
successor, and to sum all the 2

ds.

9



window can have the same radius. In fact, we don’t need windows, since the bottom wheel
now has only a single circle of symbols, all of which are always visible.

This is the intuition behind the multiplication wheel, which is actually a circular
slide wheel:

FIXME put an image here

Translation. There are actually two kinds of multiplication that we might want to do:
symbol-by-symbol multiplication and symbol-by-bech32-character multiplication. The lat-
ter we refer to as translation.

Algebraically, multiplication and translation are identical, of course. But in practice,
multiplication is used to combine k = 2 Lagrange basis polynomials (encoded as symbols)
to get k > 2 basis polynomials (also symbols). Meanwhile transalation is used to multi-
ple the basis polynomials (symbols) by share values (characters) to get translated shares
(characters).

Since translation is identical to multiplication, we might hope that we could construct
a translation slide rule by simply relabelling the multiplication slide rule. Indeed, we could
do this by changing the inner wheel to use bech32 characters rather than symbols. Then
to translate a character c by a symbol σ, the user would turn the wheel to point to c, look
for σ, and find what it points to.

However, in practice this is a pretty awkward setup, for two reasons:

• Again, because the correspondence between bech32 characters and F32 does not have
any algebraic structure, ordering the characters by increasing powers of α results in
an unintuitive ordering.

We have chosen to just live with this problem. All the characters are visible at the
same time, so it isn’t nearly as a bad a usability burden as it would’ve been with a
volvelle.

• Since zero (Q) is a valid share value, we actually do need to think about multiplication
by 0.

In contrast, zero would not be valid Lagrange basis polynomial, unless the user tried
to input the S share, which the Recovery slide rule (see next section) won’t let her do.

We solve this by just printing Q ↔ Q on the front of the slide rule.

• Most importantly, under normal usage, a user has a single symbol σ which she wants
to translate the 48+ characters of a share by. If she had to rotate the wheel to every
symbol and then look up σ again, this would be tiring and error-prone.

It would be better if she could just turn the wheel to σ and then look up every
character.

This seems physically impossible, since the wheel pointer points to a symbol on the
outer wheel, which uses the output (bech32) alphabet. However, Russell noticed that if we
simply glue the Translation wheel to the back of the Multiplication wheel, with the symbol

10



ordering reversed, the user can move the pointer on the back of the wheel and then do
lookups on the front.

Of course, we are mathematicians, so while we have brass fasteners, we have no glue. So
the actual assembly method is to print both sides attached to each other, then fold them
together. We then have two slide rules, whose top and bottom wheels are now the “outer”
and “inner” wheels, and which are on opposite sides of the same pages.

FIXME put an image here

1.9 The Recovery Slide Chart

There is one remaining paper computer to design. This one is the Recovery wheel, which
computes Lagrange basis polynomials, evaluated at S. That is, it computes the map

(p, r) ↦ r + S
r + p =

r + S

r + S + p + S
≕

r̂

r̂ + p̂
=

1

1 + p̂/r̂

(where ĉ ≔ c + S is just a relabeling of our character set).
The idea is that the user would turn the wheel so that the pointer points at share index

p, looks on the wheel for the arrow labeled r, and the resulting symbol is the Lagrange
basis polynomial. We notice that the result is undefined when r = p, which corresponds to
the case when you are trying to use the same share twice, which makes intuitive sense.

Here p and r are both bech32 characters and the output is a symbol.
Now, as before we may write p̂ = α

ip̂ and r̂ = α
ir̂ , where α is a generator of our

multiplicative group. Then we have

(p, r) ↦ [1 + α
ip̂−ir̂]−1

The addition of 1 and the multiplicative inversion can be accomplished by more re-
labeling, and the fact that we have a difference rather than sum in the exponent of α

can be accomodated by reversing the direction of our arrows relative to the arrows on the
multiplication wheel. Putting it all together, to get a recovery slide rule, we

1. Reverse the arrows in our multiplication slide rule, as we are doing division rather
than multiplication.

2. Apply x ↦ x + S to the inputs (which are now both on the bottom wheel, so we can
permute them independently of the outputs), and x ↦ [1+x]−1 to the output (which
is on the top wheel).

FIXME put an image here
Finally, we observe that, if we center our slide rule on the α

0 output slot (the one with
the pointer on it, rather than a symbol), looking j positions to the left and right we have
the values

[1 + α
−j]−1 and [1 + α

j]−1

11



and it can be computed directly that these sum to 1. In fact, this is exactly the relation
between pairs of Lagrange basis polynomials for the case k = 2. (There are only two of
them, and they add up to one because Lagrange basis polynomials form affine sets.) So we
can draw horizontal lines between these pairs, making the wheel visuall distinct from the
other wheels and also guiding the user in the k = 2 case3

The two alphabets. Now that we have all four of our paper computers defined, we can
see the justification for having two alphabets: both share creation and and secret recovery
are implemented as Lagrange interpolation using Equation (1) on page 3. In that equation,
we are performing a linear combination of yi values, which are secret shares encoded as
bech32 characters. These values are exclusively multiplied by Lagrange basis polynomials,
which are always products of terms of the form (x + y)/(x + z).

The process then, to do Lagrange interpolation, is to determine the ℓi(x) polynomial
evaluated at the target share x (the share to create, or S in the case of recovery), which
can be done either using lookup tables or by finding component symbols on the Recovery
Volvelle and multiplying them together using the Multiplication Wheel. Next, multiply
each share yi by the resulting ℓi(x), using the Translation Volvelle, and add them together
using the Addition Volvelle.

In short, the bech32 alphabet is used for share values and share indices (which must use
the same alphabet since the index is encoded in the share itself) while the symbol alphabet
is used for Lagrange basis polynomials and their factors. The user never needs to add basis
polynomials and never needs to multiply share values, so providing this capability would
serve only to enable wrong turns.

Unfortunately, it is still possible (and not difficult) for the user to confuse share values
and share indices. I don’t believe there is any way to avoid this.

1.10 BCH Codes

The final preliminary we need is that of a BCH code. There is a rich and enormous theory
underlying BCH codes, and linear codes in general, but we will take an operationalist point
of view and summarize just the facts that we need:

An error-correcting code is a mapping from a set of raw data, called messages
into a larger set of codewords which have some extra algebraic structure. In particular,
between every pair of codewords there is a minimum distance, which measures the number
of characters at which the two codewords differ.

3Russell’s reasoning for these lines, which made sense to me when I first heard it, was that to look up
these basis polynomials, you turn to one symbol and look up the other; then turn to the other and look up
the symbol. So by some sort of symmetry of turning these pairs all have to be opposite each other.

I’m not sure I see the symmetry he was referring to, but there is a simpler algebraic reason: when you
exchange r and p, as you do when computing the two Lagrange basis polynomials for the k = 2 case, you
replace r̂/p̂ with its reciprocal, which is the same as mirroring it over the α

0 position on a slide rule. Then
the fact that these add to 1 is just a restatement of the fact that Lagrange basis polynomials form an affine
set.

Is there a “deeper” reason this all works out?

12



Since all codewords differ by at least the minimum distance d, if there are at most d− 1

errors in a codeword, the result is guaranteed not to be a valid codeword, and to be detected
as an error pattern. If there are fewer than d/2 errors, the correct codeword is uniquely
determined by being the closest codeword to the error pattern, which means that this many
errors can actually be corrected.

A BCH code is a specific type of error-correcting code. In a BCH code, codewords
are constructed by encoding data as the coefficients of a large polynomial, then affixing
some number of checksum characters. The checksum characters are chosen such that
the resulting polynomial is in a specific residue class modulo a generator polynomial
G(x).

Given a potential codeword, there is a unique minimum-degree polynomial equivalent
to this codeword modulo G(x), which can be found by modular reduction. We refer to this
reduced polynomial as the reside of the codeword.

There are several properties of a BCH code that we will need:

• The degree of the code is the degree the roots of its generator polynomial. (Since
the generator polynomial is not, in general, irreducible, this is not the degree of the
generator polynomial.)

The degree of our BCH code, and that of bech32, is 2. Degree-1 BCH codes are called
Reed-Solomon codes.

• The length of the code is how long a coded message can be (including the checksum!)
for the code to retain its error-correcting properties.

The length ℓ can be computed as the smallest polynomial of the form x
ℓ − x that the

generator divides. It is then clear that if you have a message of this length, that the
ℓth character will be interpreted as the coefficient of xℓ−1

≡ 1 mod G(x), meaning that
it will just mask your first character rather than being checksummed independently.

The length of our code is 93. The length of bech32 is 1023 (although through an
exhaustive search, it was found to have better error detection properties than the
algebra would suggest, up to length 71).

This means that you cannot encode messages longer than 80 characters (six character
header plus 370 data bits) using this checksum! You must split your data and use
multiple checksums.

• The m-value is the specific residue that all codewords must must have. All m values
are equivalent, in the sense that it is easy to convert from one m value to another
(simply add the difference to the checksum characters, modulo G(x)).
But m = 0 has the particularly bad property that any codeword can be extended by
addition of an arbitrary number of 0s to get another valid codeword. (This highlights
the fact that BCH codes are designed to handle only substitution or erasure errors,
not insertions or deletions.) Other small values of m have similar issues; bech32 was

13



originally defined to have m = 1 but later needed to be modified to bech32m for this
reason. bech32m uses a large random m instead.

On the other hand, m = 0 makes a BCH code a linear code, and brings with it a
ton of algebraic properties which are needed for analysis, so this is what is used in
the literature.

In practice it is common to use a string of all-bits-one for m. For our code, we chose
characters which spell out SECRETSHARE32.

• The checksum length is the number of extra characters that need to be added to
a string to ensure that it has the correct residue. This value is the degree of the
generator polynomial.

We will return to BCH codes in the main text, when we discuss the Checksum Worksheet
and the properties of BCH codes which make them compatible with Shamir’s Secret Sharing.

2 The Checksum

We now get into the meat of the document, where we descibe how the actual user processes
are implemented. We start with the checksum.

2.1 The Math

Our checksum is defined by a BCH code with generator polynomial

G(x) = x
13

+ {31}x12
+ {5}x11

+ {3}x10
+ {28}x9

+ {0}x8
+ {31}x7

+ {31}x6
+ {31}x5

+ {9}x4
+ {5}x3

+ {30}x2
+ {2}x + {2}

Here the notation {n} means that the binary expansion of n should be interpreted as
the binary encoding of a F32 element. That is, with α the standard generator of F32,

{∑
i

2
i
bi} ↦ ∑

i

α
i
bi

To checksum a string of bech32 characters {vi}ni=1, we want to encode it as a polynomial

p(x) = x
n
+

n−1

∑
i=0

v
n−i

x
i

such that p(x) mod G(x) is equal to SECRETSHARE32, or

r(x) = {16}x12
+ {25}x11

+ {24}x10
+ {3}x9

+ {25}x8
+ {11}x7

+ {16}x6
+ {23}x5

+ {29}x4
+ {3}x3

+ {25}x2
+ {17}x + {10}

14



Remembering throughout that an n-degree polynomial has (n+ 1) terms, the way that we
do this is to concatenate the target residue SECRETSHARE32 to our message {vi}, compute
the resulting residue

p̂(x) = x
n+13

+
n+13−1

∑
i=0

v
n+13−i

x
i mod G(x) (2)

We call the thirteen resulting characters the checksum and replace our copy of SECRETSHARE32
with them

Why does this work? Our goal is to find a checksum such that, when it is concatenated
to our original message, we get the correct residue mod G(x). In Equation (2), we multiplied
our original message by x

13 (whose residue would then be the negation of our checksum,
minus the target residue) and added our target residue, to get the negation of our checksum.
Remember that in F32 negation is a no-op, so we’re done.

2.2 The Worksheet

As described in the last section, our checksum verification algorithm is: encode the message
as a polynomial, take it mod G(x), and compare it against the fixed string SECRETSHARE32.
The checksum generation algorithm is essentially the same: append SECRETSHARE32 in place
of the checksum, take the resulting polynomial mod G(x), then use the result as the actual
checksum.

How do we do this in practice? In short, we build up our polynomial two characters as
a time: multiply by x

2, add two new characters, reduce, repeat. In detail:

Checksum Verification.

1. Take the prefix ms1 and encode it as a bech32 human readable part (HRP), which
works out to RRQDN (the process is to take the high 3 bits of each 8-bit ASCII character,
followed by 0, followed by the low 5 bits of each character). Prefix a 1, or P. The
resulting initial polynomial is PRRQDN, or

x
5
+ {3}x4

+ {3}x3
+ 0x

2
+ {13}x + {19}

Multiply this by x
13 and reduce it mod G(x). The result will be TXJXCH7MFTY2P.

This string is initially filled in in the checksum worksheet.

2. Add the first 13 characters of the data to be checksummed. The result will be the
residue of ms1<first 13 user characters>, and this is what the first two lines of
the checksum worksheet compute.

3. Multiply by x
2 and add the next two characters of data. This is done by shifting the

characters two spaces to the left (equivalently, shifting all subsequent characters two
spaces to the right).

15



The result will be a 15-character row where the leftmost characters ℓ1 and ℓ2 are the
coefficients of x13 and x

14.

4. Reduce the whole string mod G(x): to do this, we need to add the lower 13 characters
(which are unaffected by reduction since G has degree 13) to the reduction of ℓ1x

14+

ℓ2x
13.

We obtain the latter reduction by looking up ℓ1 and ℓ2 in the giant provided "Check-
sum Table", which computes every possible reduction in PostScript.

5. Repeat the previous two steps until you run out of data.

6. Check that the final result is SECRETSHARE32.

Checksum Generation. This is basically identical to checksum verification, except that
the final 13 characters are initially not available. On the worksheet these are colored pink
to indicate to the user that she should stop filling random data into the cells.

In the mathematical description we suggest putting SECRETSHARE in place of the check-
sum, then replacing it. It is equivalent to instead write SECRETSHARE in the final row of
cells, which lays directly below the final 13 user-data cells, and “backsolve” by then adding
all the rows above it. This will place the residue, which is the desired checksum, in the
correct place.

3 Secret Sharing

In the Mathematical Preliminaries section we described Lagrange interpolation and Shamir’s
Secret Sharing Scheme (SSSS). We defined the Fundamental Theorem of Computing SSSS
With Volvelles as the observation that Lagrange interpolation allows evaluating a polyno-
mial at a fixed point as an affine combination of its evaluations at other fixed points.

As a consequence, any linear or affine relationship between the original evalutations will
be preserved. We will come to this in a moment, but first let’s describe the SSSS process.

3.1 Computing SSSS

There are two places where we use Lagrange interpolation:

• When creating a share with index x, we start with k initial shares x1, x2, . . . , xk

whose indices are always the first k symbols of the bech32 alphabet A, C, D, etc.

(There is an alternate process where the user starts with a fixed secret, in which case
x1 is S and the other xi’s are shifted, but the rest is exactly the same.)

• When recovering a secret, we start with k shares with indices {xi}ki=1 which are fixed
during recovery but unpredictable in advance, and compute the S share.

16



In both cases, the computation is straightforward: evaluate (1) as

p(x) =
k

∑
i=1

ℓi(x)yi

Here yi is the value of the ith share and ℓi(x) must be computed by the user. To avoid
confusion, the user always computes ℓi(x) using the symbol alphabet rather than the bech32
alphabet. The process is:

• During share creation, the evaluation points {xi}, which are the user’s initial share
indices, are always fixed. Therefore ℓi(x) is purely a function of x (the index of the
share to be created) and k. There aren’t that many possibilities so we simply provide
tables on the “Constructing Shares” page.

(It is instructive to modify the PostScript source for these tables to allow “deriving”
the initial shares. You will find that the index for the initial share under question is
1 (ℵ) while the index for all the other shares is 0 (×).)

• During recovery, there are up to 31 outstanding non-S shares and the user has an
arbitrary subset of k of them. There are (31

k
) possibilities, which for k = 2 is a

reasonable number — 465 — but for k ≥ 3 quickly grows out of hand.

For k = 2 we provide a table, both in tabular form and in the form of a volvelle. This
is what the “Recover Share” volvelle is, and at position p, window w it computes

ℓi(S) =
w + S
w + p

Here position p is the index of share yi whose multiplier is being computed, and w is the
index of the other share. This is the only volvelle which takes two bech32 characters
and outputs a symbol, so it is clear which volvelle she should use. Unfortunately, it
is easy to get p and w confused. Is there a way we could make this more intuitive?
Not that we could think of.

For k ≥ 3, for target share p (index of yi) with other shares {wi}k−1i=1 , we need to
compute

ℓi(S) =
k−1

∏
i=1

wi + S
wi + p

with notation chosen to highlight that the Lagrange basis polynomials for k ≥ 3 are
products of the basis polynomials for k = 2.

This fortuitous fact means that the user can compute polynomials ℓi(S) by looking
up factors using the Recover Share volvelle (rotate it to index p then read all the wi’s
off the front), and then multiplying the results using the Multiplication slide chart.

The multiplication slide chart is the only wheel which takes two symbols as input, so
it is hard for the user to do the wrong thing here.

17



Once the user has computed the ℓi(x)’s, the rest is simple: multiply each cell of yi (the
value of the ith share, encoded in the bech32 alphabet) by ℓi(x) (computed above, encoded
in the symbol alphabet) using the Translation volvelle.

This volvelle is the only one that has both symbols and bech32 characters so it is hard
for the user to do the wrong thing here.

This will give the user k translated shares ŷi, which she should then add together using
the Addition volvelle. We have provided an addition worksheet to help keep everything
straight.

3.2 SSSS and Checksumming

Once the user has computed her derived share(s) or recovered her secret S share, she will
likely notice that the produced share header is of the correct form and has the correct
index. This is cool to see but not mathematically surprising: the fixed parts of the header
are produced by interpolating a constant polynomial and the share index is produced by
interpolating the polynomial f(x) = x.

What is more mathematically impressive is that the last 13 symbols of the polynomial
will constitute a valid checksum for the resulting share. This is a consequence of the
Fundamental Theorem, which says that any affine relationships will be preserved.

In fact, in a complete Checksum Worksheet, every single cell that the user fills in is an
affine function of the share data. This means that if you pick an arbitrary cell, say, the
fourth cell of the tenth row, you can use the above process to combine those cells from
the initial shares’ worksheets and produce the corresponding cell on the derived share’s
worksheet.

This means in particular, that the final row (SECRETSHARE32) will be preserved, meaning
that the checksum of the derived share will be correct. But it also means that, if the user
uses the checksum worksheet to verify her share translation (which she should!) she can
“sanity check” her work by pre-deriving cells.

This is very exciting, because normally the Checksum Worksheet takes a long time to
fill out and provides the user no feedback until the very end. We therefore recommend the
following process for derived shares and recovery:

1. Before deriving any shares, complete Checksum Worksheets for the inital shares.
(During construction these should be readily available; during recovery it’s worth
doing as a sanity check.)

2. Derive the actual share, using the above method.

3. Copy the share into the top diagonal of a fresh Checksum Worksheet

4. Derive the cells of the bottom diagonal directly, in the same way that you derived the
top diagonal.

5. Start working through the worksheet.

18



If, at any point, the computed value of a bottom diagonal square doesn’t match the
precomputed value, it means you made a mistake in that column. Re-derive the top and
bottom values and redo the additions before continuing.

4 Conclusion and Acknowledgements

We thank the authors of SLIP39 for noticing the remarkable compatibility between SSSS
and BCH codes (or any linear code), which enable user-computed SSSS. Even if SSSS were
otherwise tractable to do, without checksumming it would be hopeless for users to recover
from arithmetic and copying mistakes and this whole project would be unworkable.

We thank Russell O’Connor for then noticing that by using a code over F32 rather than
F1024, it is possible to do these computations by hand, and for putting together the initial
prototype of this project which included the PostScript fundamentals to do computations
with BCH codes, to draw 32-by-32 volvelles, and to do 2-of-n secret sharing.

We also thank Micaela Paez for the amazing artwork that adorns the volvelles.
From that point onward it was a trip to bring everything together, optimizing the layout

of the volvelles and worksheets for user experience, reducing the total number of volvelles,
introducing the slide rule, discovering how to localize Checksum Worksheet errors, and
adding artwork and color.

The result has been a remarkable, and even mathematically novel, project which fits
together much better than any of us expected.

We hope you will appreciate the mathematical beauty of this construction, or at least
appreciate the peace of mind that comes with being able to redundantly back up your
Bitcoin secrets without the use of electronic computing devices.

19


	Mathematical Preliminaries
	Fields and F2
	Polynomial Rings
	Quotient Fields
	Vector Spaces
	Lagrange Interpolation and Shamir's Secret Sharing
	The Bech32 Alphabet
	The Addition Volvelle
	The Multiplication-Translation Slide Rule
	The Recovery Slide Chart
	BCH Codes

	The Checksum
	The Math
	The Worksheet

	Secret Sharing
	Computing SSSS
	SSSS and Checksumming

	Conclusion and Acknowledgements

